Mark Scheme (Results)

January 2023

Pearson Edexcel International Advanced Level In Pure Mathematics P1 (WMA11) Paper 01

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.btec.co.uk. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

January 2023
Question Paper Log Number P72066A
Publications Code WMA11_01_MS_2301
All the material in this publication is copyright
© Pearson Education Ltd 2023

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

PEARSON EDEXCEL IAL MATHEMATICS

General Instructions for Marking

1. The total number of marks for this paper is 75 .
2. The Edexcel Mathematics mark schemes use the following types of marks:

'M' marks

These are marks given for a correct method or an attempt at a correct method. In Mechanics they are usually awarded for the application of some mechanical principle to produce an equation.
e.g. resolving in a particular direction, taking moments about a point, applying a suvat equation, applying the conservation of momentum principle etc.
The following criteria are usually applied to the equation.
To earn the M mark, the equation
(i) should have the correct number of terms
(ii) be dimensionally correct i.e. all the terms need to be dimensionally correct
e.g. in a moments equation, every term must be a 'force x distance' term or 'mass x distance', if we allow them to cancel ' g ' s.
For a resolution, all terms that need to be resolved (multiplied by sin or cos) must be resolved to earn the M mark.

M marks are sometimes dependent (DM) on previous M marks having been earned. e.g. when two simultaneous equations have been set up by, for example, resolving in two directions and there is then an M mark for solving the equations to find a particular quantity this M mark is often dependent on the two previous M marks having been earned.
'A' marks
These are dependent accuracy (or sometimes answer) marks and can only be awarded if the previous M mark has been earned. e.g. M0 A1 is impossible.
'B' marks
These are independent accuracy marks where there is no method (e.g. often given for a comment or for a graph).

A few of the A and B marks may be f.t. - follow through - marks.
3. General Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes.

- bod - benefit of doubt
- ft - follow through
- the symbol $\sqrt{ }$ will be used for correct ft
- cao - correct answer only
- cso - correct solution only. There must be no errors in this part of the question to obtain this mark
- isw - ignore subsequent working
- awrt - answers which round to
- SC - special case
- oe - or equivalent (and appropriate)
- dep - dependent
- indep - independent
- dp - decimal places
- sf-significant figures
- $\quad *$ - The answer is printed on the paper
- \quad - The second mark is dependent on gaining the first mark

4. All A marks are 'correct answer only' (cao), unless shown, for example as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks are treated as A ft, but manifestly absurd answers should never be awarded A marks.
5. For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected.
6. If a candidate makes more than one attempt at any question:

- If all but one attempt is crossed out, mark the attempt which is NOT crossed out.
- If either all attempts are crossed out or none are crossed out, mark all the attempts and score the highest single attempt.

7. Ignore wrong working or incorrect statements following a correct answer.

General Principles for Pure Mathematics Marking

(But note that specific mark schemes may sometimes override these general priniciples)

Method mark for solving 3 term quadratic:

1. Factorisation

$\left(x^{2}+b x+c\right)=(x+p)(x+q)$, where $|p q|=|c|$ leading to $x=\ldots$
$\left(a x^{2}+b x+c\right)=(m x+p)(n x+q)$, where $|p q|=|c|$ and $|m n|=|a|$ leading to $x=\ldots$
2. Formula

Attempt to use the correct formula (with values for a, b and c).
3. Completing the square

Solving $x^{2}+b x+c=0:\left(x \pm \frac{b}{2}\right)^{2} \pm q \pm c=0, q \neq 0$, leading to $x=\ldots$

Method mark for differentiation and integration:

1. Differentiation

Power of at least one term decreased by 1. $\left(x^{n} \rightarrow x^{n-1}\right)$

2. Integration

Power of at least one term increased by 1 . $\left(x^{n} \rightarrow x^{n+1}\right)$

Use of a formula

Where a method involves using a formula that has been learnt, the advice given in recent examiners' reports is that the formula should be quoted first.

Normal marking procedure is as follows:
Method mark for quoting a correct formula and attempting to use it, even if there are small errors in the substitution of values. Where the formula is not quoted, the method mark can be gained by implication from correct working with values but may be lost if there is any mistake in the working.

Exact answers

Examiners' reports have emphasised that where, for example, an exact answer is asked for, or working with surds is clearly required, marks will normally be lost if the candidate resorts to using rounded decimals.

Answers without working

The rubric says that these may not gain full credit. Individual mark schemes will give details of what happens in particular cases. General policy is that if it could be done "in your head", detailed working would not be required. Most candidates do show working, but there are occasional awkward cases and if the mark scheme does not cover this, please contact your team leader for advice.

Question Number	Scheme	Marks
$\mathbf{1}$	$y=2+10 x^{\frac{1}{2}}-2 x^{\frac{3}{2}}$	
(a)	$\frac{\mathrm{d} y}{\mathrm{~d} x}=5 x^{-\frac{1}{2}}-3 x^{\frac{1}{2}}$	M1 A1 A1
(b)	$x=2 \Rightarrow \frac{\mathrm{~d} y}{\mathrm{~d} x}=\frac{5}{\sqrt{2}}-3 \sqrt{2}$	M1
	$\frac{5}{\sqrt{2}}-3 \sqrt{2}=\frac{5}{2} \sqrt{2}-3 \sqrt{2}=-\frac{1}{2} \sqrt{2}$	A1
		$\mathbf{(5) \text { marks) }}$

(a) Mark (a) and (b) together.

M1: For ANY one of: $10 x^{\frac{1}{2}} \rightarrow \ldots x^{-\frac{1}{2}}$ or $-2 x^{\frac{3}{2}} \rightarrow \ldots x^{\frac{1}{2}}$ or $2 \rightarrow 0$
A1: For one simplified term e.g. either $10 x^{\frac{1}{2}} \rightarrow 5 x^{-\frac{1}{2}}$ or $-2 x^{\frac{3}{2}} \rightarrow-3 x^{\frac{1}{2}}$
A1: $\left(\frac{\mathrm{d} y}{\mathrm{~d} x}=\right) 5 x^{-\frac{1}{2}}-3 x^{\frac{1}{2}}$. Allow e.g. $\left(\frac{\mathrm{d} y}{\mathrm{~d} x}=\right) \frac{5}{\sqrt{x}}-3 \sqrt{x}$. The " $\frac{\mathrm{d} y}{\mathrm{~d} x}="$ is not required. Condone " +0 " as part of their answer.
There must be no other terms e.g. " $+c$ " or e.g. $\left(\frac{\mathrm{d} y}{\mathrm{~d} x}=\right) 2+5 x^{-\frac{1}{2}}-3 x^{\frac{1}{2}}$ but apply isw if possible once a correct simplified derivative with no extra terms is seen.
(b)

M1: For an attempt to substitute $x=2$ fully into their $\frac{\mathrm{d} y}{\mathrm{~d} x}$ which is not y e.g. it must be a "changed" function which could even come from integration.
All that is required is the substitution so allow for e.g. $5(2)^{-\frac{1}{2}}-3(2)^{\frac{1}{2}}$
This mark may be implied by their answer or e.g. a decimal answer of awrt -0.7 following a correct derivative.
Do not allow this mark if they have e.g. $\left(\frac{\mathrm{d} y}{\mathrm{~d} x}=\right) 5 x^{-\frac{1}{2}}-3 x^{\frac{1}{2}}+c$ in part (a) AND subsequently go on to try and establish a value for " c " using $x=2$.
A1: $-\frac{1}{2} \sqrt{2}$ or exact simplified equivalent e.g. $-\frac{1}{\sqrt{2}},-0.5 \sqrt{2},-2^{-\frac{1}{2}},-2^{-0.5}$ following at least one intermediate line of working.
E.g. $\frac{5}{\sqrt{x}}-3 \sqrt{x}=\frac{5}{\sqrt{2}}-3 \sqrt{2}=-\frac{1}{\sqrt{2}}$ scores M1A0
but $\frac{5}{\sqrt{x}}-3 \sqrt{x}=\frac{5}{\sqrt{2}}-3 \sqrt{2}=\frac{5 \sqrt{2}}{2}-3 \sqrt{2}=-\frac{\sqrt{2}}{2}$ or $-\frac{1}{\sqrt{2}}$ scores M1A1
Other examples of sufficient working:
$\frac{5}{\sqrt{x}}-3 \sqrt{x}=\frac{5}{\sqrt{2}}-3 \sqrt{2}=\frac{5-6}{\sqrt{2}}=-\frac{1}{\sqrt{2}}, \quad \frac{5}{\sqrt{x}}-3 \sqrt{x}=\frac{5}{\sqrt{2}}-3 \sqrt{2}=\left(\frac{5}{2}-3\right) \sqrt{2}=-\frac{\sqrt{2}}{2}$
Apply isw once a correct exact answer is seen.

Question Number	Scheme	Marks
2(a)	$P(-3,7), Q(9,11)$ and $R(12,2)$	
Way 1	$\operatorname{grad} P Q=\frac{11-7}{9--3}=\frac{1}{3}, \operatorname{grad} Q R=\frac{11-2}{9-12}=-3$	M1 A1
	$\frac{1}{3} \times-3=-1$ so angle $P Q R=90^{\circ}$	A1
		(3)
Way 2	$\begin{gathered} P Q^{2}=(9--3)^{2}+(11-7)^{2}=160 \\ Q R^{2}=(12-9)^{2}+(2-11)^{2}=90 \\ P R^{2}=(12--3)^{2}+(2-7)^{2}=250 \end{gathered}$	M1 A1
	$\begin{gathered} P Q^{2}+Q R^{2}=P R^{2}(\text { or e.g. } 90+160=250) \text { so angle } P Q R=90^{\circ} \\ \text { or e.g. } \\ \cos \theta=\frac{160+90-250}{2 \sqrt{160} \sqrt{90}}=0 \Rightarrow \theta=90^{\circ} \end{gathered}$	A1
		(3)
Way 3	$\overrightarrow{P Q}=\binom{9--3}{11-7}=\binom{12}{4}, \overrightarrow{Q R}=\binom{12-9}{2-11}=\binom{3}{-9}$	M1A1
	$\overrightarrow{P Q} \cdot \overrightarrow{Q R}=\binom{12}{4} \cdot\binom{3}{-9}=36-36=0$ so angle $P Q R=90^{\circ}$	A1
		(3)

General Guidance for part (a)

M1: Requires some correct work depending on the method
A1: Correct work for the chosen method
A1: Depends on both previous marks and requires an explanation and a conclusion.
The conclusion must refer to angle $P Q R$ being 90° or equivalent e.g. " $P Q$ and $Q R$ are perpendicular",
" Q is 90 ", " Q is a right angle" etc. but condone e.g. " $A=90$ " or e.g. " $\theta=90$ " if the solution is otherwise correct.
This may occur in a preamble e.g. If $\operatorname{grad} P Q \times \operatorname{Grad} Q R=-1$ then $P Q R=90$,

$$
\frac{11-7}{9--3}=\frac{1}{3}, \frac{11-2}{9-12}=-3, \frac{1}{3} \times-3=-1 \text { hence proven. }
$$

Scores full marks.

(a) Way 1

M1: Attempts both gradients with an attempt at $\frac{\text { differencein } y}{\text { differencein } x}$ seen at least once.
A1: Achieves both correct gradients which may be left unsimplified e.g. $\operatorname{grad} P Q=\frac{4}{12}$ and $\operatorname{grad} Q R=\frac{9}{-3}$
A1: e.g. $\frac{1}{3} \times-3=-1 \Rightarrow P Q R=90^{\circ}$ or e.g. $\frac{1}{3}$ is the negative reciprocal of -3 so $Q=90$.
Do not allow ambiguous statements e.g. $\frac{1}{3}$ is the opposite inverse of -3 for the explanation.
NB: $\frac{11-7}{9--3}=\frac{1}{3}, \frac{11-2}{9-12}=-3, \frac{1}{3} \times-3=-1 \Rightarrow P Q R=90^{\circ}$ would be a minimum for M1A1A1
(a) Way 2

M1: Attempts all three lengths with an attempt at "the difference between the coordinates" and "squaring" seen at least twice. Note that the "differences" may be implied by their answers or their lengths.
A1: All three lengths or lengths ${ }^{2}$ correct as single exact terms or as decimals - allow one d.p. Lengths are $\sqrt{160}, \sqrt{90}, \sqrt{250}$ or $4 \sqrt{10}, 3 \sqrt{10}, 5 \sqrt{10}$ or e.g. 12.6, 9.5 (or 9.4 truncated), 15.8
A1: via Pythagoras or cosine rule e.g.
$P Q^{2}+Q R^{2}=P R^{2}$ so $P Q R=90^{\circ}$ or e.g. $\cos \theta=\frac{160+90-250}{2 \sqrt{160} \sqrt{90}}=0 \Rightarrow \theta=90^{\circ}$
If via the cosine rule, all values must be in the correct positions with correct signs.
" $160,90,250$ is a Pythagorean triple so $P Q R=90^{\circ}$ " is acceptable for the final mark.
Values must appear as exact for this mark. E.g. $\cos \theta=\frac{12.6^{2}+9.5^{2}-15.8^{2}}{2 \times 12.6 \times 9.5}=0 \Rightarrow \theta=90^{\circ}$ scores
M1A1A0
(a) Way 3

M1: Attempts $\pm \overrightarrow{P Q}$ and $\pm \overrightarrow{Q R}$ with an attempt at "the difference between the coordinates" seen at least twice
A1: Correct vectors for $\pm \overrightarrow{P Q}$ and $\pm \overrightarrow{Q R}$
A1: $\overrightarrow{P Q} \cdot \overrightarrow{Q R}=0$ so angle $P Q R=90^{\circ}$

Part (b)

(b)	E.g. $(-3,7)+(3,-9)=\ldots$ or $(12,2)-(12,4)=\ldots$	M1
	$(0,-2)$	A1
		(2)
ALT 1	$\operatorname{grad} P Q=\frac{11-7}{9--3}=\frac{1}{3} \Rightarrow$ eqn $R S$ is $y-2=\frac{1}{3}(x-12)$ $\operatorname{grad} Q R=\frac{11-2}{9-12}=-3 \Rightarrow$ eqn $P S$ is $y-7=-3(x+3)$ $\Rightarrow x=\ldots, y=\ldots$	M1
	$(0,-2)$	A1
ALT 2	Midpoint $P R$ is $\left(\frac{9}{2}, \frac{9}{2}\right) \Rightarrow \frac{9+x}{2}=\frac{9}{2}, \frac{11+y}{2}=\frac{9}{2} \Rightarrow x=\ldots, y=\ldots$	M1
	$(0,-2)$	A1
		(5 marks)

(b)

M1: Any suitable method of finding at least x or y for S. It can be implied by one correct coordinate which may be seen on a diagram.
e.g. Via vectors $(-3,7)+(3,-9)=(0,-2)$ or $(12,2)-(12,4)=(0,-2)$

A1: Correct coordinates $(0,-2)$ which may be written separately e.g. $x=0, y=-2$ or as $\binom{0}{-2}$
Alt 1(b)
M1: Attempts the equation of line $P S$, the equation of line $R S$ and solves simultaneously to find x or y
A1: Correct coordinates $(0,-2)$ which may be written separately e.g. $x=0, y=-2$ or as $\binom{0}{-2}$

Alt 2(b)

M1: Attempts the midpoint of $P R$ and uses Q to find S for at least one of x or y
A1: Correct coordinates $(0,-2)$ which may be written separately e.g. $x=0, y=-2$ or as $\binom{0}{-2}$

Question Number	Scheme	Marks
$\mathbf{3}$	$\int \frac{4 x^{5}+3}{2 x^{2}} \mathrm{~d} x=\int 2 x^{3}+\frac{3}{2} x^{-2} \mathrm{~d} x$	M1 A1
	$=\frac{1}{2} x^{4}-\frac{3}{2} x^{-1}+c$	dM1 A1 A1
		(5 marks)

M1: Attempts to write as a sum of two terms with one processed index correct.
Award for $P x^{3}+Q x^{k}$ or $P x^{k}+Q x^{-2}$ or $P x^{k}+\frac{Q}{x^{2}}$ where k could be 0 i.e. a constant term.
A1: Correct integrand written as a sum of two terms with indices processed. E.g. $2 x^{3}+\frac{3}{2} x^{-2}$ seen in one expression.
Award for any exact equivalent such as $\frac{1}{2}\left(4 x^{3}+\frac{3}{x^{2}}\right)$ or e.g. $\frac{4}{2} x^{3}+\frac{3}{2 x^{2}}$ or e.g. $\frac{4 x^{3}+3 x^{-2}}{2}$
dM1: Attempts to integrate an expression of the form $P x^{m}+Q x^{n}, m=3$ or $n=-2$, raising one of the indices by one. Depends on the first M mark.
A1: Either term correct and simplified and from correct work: $\frac{1}{2} x^{4}+A x^{n}(+c)$ or $B x^{m}-\frac{3}{2} x^{-1}(+c)$
A1: $\frac{1}{2} x^{4}-\frac{3}{2} x^{-1}+c$. Allow simplified equivalents e.g. $\frac{1}{2} x^{4}-\frac{3}{2 x}+c, 0.5 x^{4}-1.5 x^{-1}+c$ but not e.g. $\frac{1}{2} x^{4}-\frac{\frac{3}{2}}{x}+c$ and not $\frac{1}{2} x^{4}+-\frac{3}{2} x^{-1}+c$.
Condone poor notation such as $\int \frac{1}{2} x^{4}-\frac{3}{2 x}+c(\mathrm{~d} x), y=\frac{1}{2} x^{4}-\frac{3}{2 x}+c$
You can ignore subsequent working if necessary e.g. award the marks once a correct answer is seen as a correct single expression.
Correct answer only scores full marks.

Question Number	Scheme	Marks
$\mathbf{4}$	$k x^{2}+6 k x+5=0$	
	$b^{2}-4 a c=(6 k)^{2}-4 \times k \times 5$	M1
	$b^{2}-4 a c=(6 k)^{2}-4 \times k \times 5 \ldots 0 \Rightarrow k \ldots$	dM1
	$k<\frac{5}{9}$	A1
	$0<k<\frac{5}{9}$	A1
		$\mathbf{(4 ~ m a r k s)}$

M1: Attempts to use $b^{2}-4 a c$ for the given quadratic with $b=6 k, \mathrm{a}=\mathrm{k}$ and $c=5$.
May be seen as part of the quadratic formula or may be implied by an attempt to solve e.g. $b^{2}=4 a c$ Condone attempts where the " 6 " isn't squared e.g. $6 k^{2}-4 \times k \times 5$ but the k must be squared.
dM1: Dependent upon the previous M mark, it is for setting $b^{2}-4 a c \ldots 0$ leading to a non-zero value for k from an "equation" of the form $\alpha k^{2}-\beta k \ldots 0$
Condone any of e.g. " $="$, " $<", ">"$ etc. for "..." for this mark.
A1: For obtaining an upper limit for k of $\frac{5}{9}$ (not just the value) but condone $k \leqslant \frac{5}{9}$ which may be implied by e.g. $0<k<\frac{5}{9}$ or $0<k \leqslant \frac{5}{9}$. Allow exact equivalents for $\frac{5}{9}$ e.g. $\frac{10}{18}$ etc. Condone the use of x for this mark so allow e.g. $x \leqslant \frac{5}{9}, x<\frac{5}{9}$ Allow 0.5 for $\frac{5}{9}$
Allow the inequalities to be on separate lines e.g. $k<\frac{5}{9}$
$k>0$

Question Number	Scheme	Marks
5(a)	$9^{x}=p^{2}, \quad 3^{x+2}=9 p \quad$ or $\quad 3^{x-1}=\frac{p}{3}$	B1
	$3 \times 9^{x}+3^{x+2}=1+3^{x-1} \Rightarrow 3 p^{2}+3^{2} \times p=1+\frac{p}{3^{1}}$	M1
	$9 p^{2}+26 p-3=0$ via $3 p^{2}+9 p=1+\frac{p}{3} *$	A1*
		(3)
(b)	$9 p^{2}+26 p-3=0 \Rightarrow(9 p-1)(p+3)=0$	M1
	$3^{x}=\frac{1}{9}$	A1 M1 in EPEN
	$x=-2$	A1
		(3)
		(6 marks)

(a) Mark (a) and (b) together.

B1: Uses an index law and states or implies any of $9^{x}=p^{2}, 3^{x+2}=9 p$ or $3^{x-1}=\frac{p}{3}$ or equivalent forms e.g. $9^{x}=p \times p, 3^{x+2}=3^{2} \times p, 3^{x-1}=p \times 3^{-1}$

If awarding for the first term, then it must be from correct work so $3 \times 9^{x}=3 \times 3^{x} \times 3^{x}=3 p^{2}$ is fine but $3 \times 9^{x}=3 \times 3^{2} \times 3^{x}=3 p^{2}$ or $3 \times 9^{x}=3 \times 3 \times 3^{x}=3 p^{2}$ is not, but do check the other terms.
M1: Look for $3 \times 9^{x}+3^{x+2}=1+3^{x-1} \Rightarrow 3 p^{2} \pm k p=1 \pm \frac{p}{3}$ oe obtained from correct work, with $k=6$ or 9 So if e.g. $3 p^{2}$ is obtained from $3 \times 9^{x}=3 \times 3^{2} \times 3^{x}=3 p^{2}$ or $3 \times 9^{x}=3 \times 3 \times 3^{x}=3 p^{2}$ then score M0.
$\mathbf{A} 1^{*}$: Proceeds to the given answer of $9 p^{2}+26 p-3=0$ with no errors or omissions.
An intermediate line of $3 p^{2}+9 p=1+\frac{p}{3}$ o.e. must be seen.
Note that the following is common in part (a) and scores no marks: $3 \times 9^{x}+3^{x+2}=1+3^{x-1} \Rightarrow 3 \times 3 p+p^{2}=1+p^{-1}$
(b)

M1: Valid non-calculator attempt at solving $9 p^{2}+26 p-3=0-$ see General Guidance.
It must be clear they are solving the given quadratic not their incorrect one.
Answers just written down scores M0
A1(M1 in EPEN): For $3^{x}=\frac{1}{9}$ seen. It must be clear that it is a value for 3^{x} and not a value for p or x. May be implied by e.g. $p=\frac{1}{9} \Rightarrow x=-2$. You can ignore e.g. $3^{x}=-3$ for this mark.
A1: $x=-2$ only

Question Number	Scheme	Marks
6(a)	$A=\frac{1}{2} r^{2} \theta \Rightarrow 40=\frac{1}{2} r^{2} \times 2.4 \Rightarrow r=\ldots$	M1
	$r=\sqrt{\frac{80}{2.4}} \Rightarrow r=5.77(\mathrm{~m})$	A1
		(2)
(b)	States or uses that angle $A O B=$ awrt 0.37	B1
		(1)
(c)	$\frac{1}{2} \times 25.77$ " $\times 6.25 \times \sin " 0.37 "(=6.5377 \ldots)$	M1
	Full method for area of stage $=40+2 \times \frac{1}{2} \times 5.77 \times 6.25 \times \sin 0.37$	dM1
	$=53.1 \mathrm{~m}^{2}$	A1
		(3)
(d)	$r \theta=25.77 " \times 2.4=(13.848)$	M1
	$x^{2}=6.25^{2}+" 5.77 "^{2}-2 \times 6.25 \times " 5.77 " \cos { }^{\prime \prime} 0.37 " \quad(x=2.26)$	M1
	Full method for perimeter of stage $=12.5+2 \times$ " 2.26 "+ " 5.77 " $\times 2.4$	ddM1
	$=30.9 \mathrm{~m}$	A1
		(4)
		(10 marks)

Allow equivalent correct work in degrees but part (b) must be in radians.
(a)

M1: Attempts to use $A=\frac{1}{2} r^{2} \theta$ with $A=40$ and $\theta=2.4$ to find a value for r
A1: Achieves awrt 5.77 (m). Apply isw if necessary e.g. if they subsequently write 5.77 as 5.8.
(b)

B1: Angle $A O B=$ awrt 0.37. Allow this to score anywhere in their answer.
(c)

M1: Attempts area of triangle $A O B$ (or triangle $D O C$) $\frac{1}{2} \times " a " \times 6.25 \times \sin " b "$ (May be seen "doubled") NB: "doubled" is $13.075 \ldots$
dM1: Attempts area of stage $40+2 \times \frac{1}{2} \times " a " \times 6.25 \times \sin " b "$ or e.g. $\frac{1}{2} \times " 5.77 "^{2} \times 2.4+2 \times \frac{1}{2} \times " a " \times 6.25 \times \sin " b "$
A1: Awrt $53.1\left(\mathrm{~m}^{2}\right)$. Condone awrt 53.0 but not just 53 unless awrt 53.1 or awrt 53.0 is seen earlier.
(d)

M1: Attempts $r \theta=" a " \times 2.4$
M1: Attempts to use the cosine rule to find length $A B$ or $A B^{2}$ (or $C D / C D^{2}$) (Allow anywhere in their solution)

$$
\text { e.g. } x^{2}=6.25^{2}+" a "^{2}-2 \times 6.25 \times " a " \cos " b "
$$

ddM1: Full method to find perimeter of stage $12.5+2 \times A B+" a " \times 2.4$
It must be clear they are using $A B$ not $A B^{2}$
Depends on both previous M marks.
A1: Awrt 30.9 (m)
Beware in (d): $A B=6.25 \sin (0.37)=2.26 \ldots$ erroneously and will lead to the correct answer 30.9
Generally, this will score M1M0ddM0A0 if the arc length calculation is correct.

(a)

M1: For a monotonically decreasing function in quadrant 1 or 3 with no incorrect asymptotes in that quadrant.
It must not cross either axis but be tolerant of functions that don't go up or down as far as the x-axis and as far left or right as the y-axis.
The "ends" should not come back away from the axes significantly but be tolerant of "wobbles".
A1: Correct shape and position with no incorrect asymptotes.
Remember to check both diagrams and score the best single attempt if both are used.
(b)

B1: Partial description that implies at least one of the two components but is not fully correct E.g. "Translates 2 units left", "Shifts/moves 2 units right"

B1: Requires (1): Translate/translation and (2): $\binom{2}{0}$ or "2 (units to the) right" or e.g. " +2 in the x direction"
A minimum could be e.g.: "Translate +2 on x "
(c)

M1: Substitutes $x= \pm 4$ into $\frac{6}{x-2}=k x+7$ and solves for k.
Allow equivalent work e.g. $x=-4 \Rightarrow y=-1 \Rightarrow-1=k(-4)+7 \Rightarrow k=\ldots$
Note that some will rearrange before substitution which is fine.
E.g. $\frac{6}{x-2}=k x+7 \Rightarrow 6=(x-2)(k x+7)=k x^{2}+(7-2 k) x-14,6=24 k-42 \Rightarrow k=\ldots$

A1: $k=2$ oe e.g. $k=\frac{4}{2}$
(d)

M1: Equates $\frac{6}{x-2}$ with $k x+7$ using their value for k, cross multiplies to obtain a quadratic equation in x with terms not necessarily collected. Note that the rearrangement may have already been done in part (c).
dM1: Solves 3TQ by any acceptable method including via a calculator.
A1: $x=\frac{5}{2}$. Condone $Q=\frac{5}{2}$
A1: $Q=\left(\frac{5}{2}, 12\right)$. Must be as coordinates or $x=\ldots, y=\ldots$

Question Number	Scheme	Marks
8(a)	$y=3 x+" c "$ or $y=" m " x-12$ '	M1
	$y=3 x-12$	A1
		(2)
(b)	$k=10$	B1
		(1)
(c)	E.g. $y=A(x-4)(x-10)$ or $y=C(x-7)^{2}-18$	M1
	$\begin{gathered} \text { E.g. }-18=A(7-4)(7-10) \Rightarrow A=\ldots \\ \text { Or } 0=C(4-7)^{2}-18 \Rightarrow C=\ldots \end{gathered}$	dM1
	$y=2(x-4)(x-10), y=2(x-7)^{2}-18$ o.e.	A1
		(3)
(d)	Two of $y>3 x-12, y<2(x-4)(x-10), x>0, x<4$	M1
	E.g. $3 x-12<y<2(x-4)(x-10), \quad 0<x<4$	A1
		(2)
		(8 marks)

(a)

M1: Attempts form $y=m x+c$ with m or c correct. May be implied by e.g. $m=3$ (or $\frac{12}{4}$) or $c=-12$
A1: $y=3 x-12$. A full correct equation is required including " $y=$ ". Condone $\frac{12}{4}$ for 3 .
(b)

B1: $k=10$. Condone $x=10$ and condone $(10,0)$
(c)

M1: Attempts an equation of the form $(y=) A(x-4)(x-" 10 ")$ or $(y=) C(x-7)^{2}-18$
Condone with $A, C=1$ or any other constant.
It is possible they could try with an attempt to use all three coordinates.
The " $\mathrm{y}=$ " is not needed unless the equation is attempted as e.g. $y+18=C(x-7)^{2}$
dM1: Full attempt at equation with an attempt at finding A or C. Depends on the first mark.
E.g. $y=A(x-4)(x-" 10 ")$ and uses $x=7, y=-18$ to find A or $y=C(x-7)^{2}-18$ and uses $x=4$ or $x=$ " 10 " when $y=0$ to find C
A1: $(y=) 2(x-4)(x-10),(y=) 2(x-7)^{2}-18$ o.e. e.g. $(y=) 2(x-7)^{2}-18$
The " $y=$ " is not required here, just look for a correct expression.
(d)

M1: Two of $y>3 x-12, y<2(x-4)(x-10), x>0, x<4 \quad$ Accept with $\leqslant \leftrightarrow<$ and $\geqslant \leftrightarrow>$
Follow through their answers to part (a) and part (c) provided (a) is linear and (c) is quadratic. Do not allow e.g. $R>3 x-12, R<2(x-4)(x-10)$ etc. but allow $\mathrm{f}(x)$ for y.

A1: Fully defines region correctly (not ft here).
E.g. $3 x-12<y<2(x-4)(x-10), \quad 0<x<4($ or $x>0, x<4)$

Or e.g. $y>3 x-12, y<2(x-4)(x-10), x>0, x<4$
The right hand side of the inequality $0<x<4$ may be larger. Accept $0<x<p$ as long as $4 \leqslant p \leqslant \frac{23}{2}$
Allow consistent use of $>\leftrightarrow \geqslant$ for all of their inequalities.

Question Number	Scheme	Marks
$\mathbf{9}(\mathbf{a})$	π	B1
(b)(i)	3	B1
(ii)	5	(1)
	(iii)	201
		B1
		$\mathbf{(1)}$

(a)

B1: Period is π (radians) but condone 180° or just 180
(b)(i)

B1: 3
(ii)

B1: 5
(iii)

B1: 201

Question Number	Scheme	Marks
10(a)	One of $-\frac{20}{3}<x<-6, \quad x>\frac{3}{2}$	M1
	Both $-\frac{20}{3}<x<-6, \quad x>\frac{3}{2}$	A1
		(2)
(b)	$(3 x+20)(x+6)(2 x-3)=(3 x+20)\left(2 x^{2}+9 x-18\right)=$	M1
	$=6 x^{3}+67 x^{2}+126 x-360$	A1 A1
		(3)
(c)	$\frac{\mathrm{d} y}{\mathrm{~d} x}=18 x^{2}+134 x+126 \Rightarrow$ Gradient at $x=0$ is 126	M1
	Equation of l is $y=126 x-360$	A1ft
	l cuts C again when $6 x^{3}+67 x^{2}+126 x-360=126 x-360$	dM1
	$6 x^{3}+67 x^{2}=0 \Rightarrow x^{2}(6 x+67)=0$	ddM1
	$x=-\frac{67}{6}$	A1
		(5)
		(10 marks)

(a)

M1: One of $-\frac{20}{3}<x<-6, \quad x>\frac{3}{2}$. Condone with $<\leftrightarrow \leqslant$ for this mark and allow equivalent notation e.g. $\left(-\frac{20}{3},-6\right),\left(\frac{3}{2}, \infty\right),\left[-\frac{20}{3},-6\right],\left[\frac{3}{2}, \infty\right)$

Allow the first inequality to be written separately as e.g. $x>-\frac{20}{3}, x<-6$,
$x>-\frac{20}{3}$ and $x<-6$
Condone incorrect notation e.g. $-\frac{20}{3}<\mathrm{f}(x)<-6, \quad \mathrm{f}(x)>\frac{3}{2}$
or e.g. $-\frac{20}{3}<y<-6, \quad y>\frac{3}{2}$
A1: Both $-\frac{20}{3}<x<-6, \quad x>\frac{3}{2}$.
Allow the first inequality to be written separately as e.g. $x>-\frac{20}{3}, x<-6$ and allow equivalent notation e.g. $\left(-\frac{20}{3},-6\right),\left[\frac{3}{2}, \infty\right)$ but not e.g. $-\frac{20}{3}<\mathrm{f}(x)<-6, \quad \mathrm{f}(x)>\frac{3}{2}$
(b) Allow (b) marks to score anywhere in their solution.

M1: Attempts to multiply two brackets to create a quadratic before multiplying by the third to form a cubic
A1: $6 x^{3}+\alpha x^{2}+\beta x \pm 360$ where α and β are not both zero.
A1: $6 x^{3}+67 x^{2}+126 x-360$. Condone a spurious " $=0$ " e.g. $6 x^{3}+67 x^{2}+126 x-360=0$ but do not isw e.g. $x^{3}+\frac{67}{6} x^{2}+21 x-60$ is A0 but see note below.
(c)

M1: Attempts the gradient of l by differentiating and substituting $x=0$
For the differentiation look for one of $\ldots x^{3} \rightarrow \ldots x^{2}, \ldots x^{2} \rightarrow \ldots x, k x \rightarrow k$
A1ft: Equation of l is $y=126 x-360$. Follow through on their $y=a x^{3}+b x^{2}+c x+d \Rightarrow y=c x+d$ Allow equivalent correct equations e.g. $y+360=126(x-0)$
dM1: Sets the equation of their l to their answer for (b). Depends on the first M mark.
ddM1: Attempts to solve cubic of the form $a x^{3}+b x^{2}=0$ by taking out a factor of x^{2} or e.g. by division by
x^{2} leading to a value for x. Depends on both previous M marks.
May be implied by e.g. $a x^{3}+b x^{2}=0 \Rightarrow x=-\frac{b}{a}$
A1: $x=-\frac{67}{6}$ and no other solutions apart from $x=0$ which can be ignored. Ignore any attempts to find y.
Note that just an incorrect x coefficient in the expansion in (b) will result in $x=-\frac{67}{6}$ in (c) if the subsequent work is correct. In such cases allow full recovery in (c).
Similarly, if the expansion in part (b) is e.g. divided by 6 to give $x^{3}+\frac{67}{6} x^{2}+21 x-60$, allow full recovery in (c) as correct work should lead to the correct answer of $x=-\frac{67}{6}$

Question Number	Scheme	Marks
11(a)	States or implies that the gradient of the normal is $-\frac{1}{3}$	M1
	Correct equation of normal e.g. $y-16=-\frac{1}{3}(x-4)$	A1
		(2)
(b)	$\mathrm{f}^{\prime \prime}(x)=4 x+x^{-\frac{1}{2}} \Rightarrow \mathrm{f}^{\prime}(x)=2 x^{2}+2 x^{\frac{1}{2}}+c$	M1
	$x=4, \mathrm{f}^{\prime}(x)=3 \Rightarrow 3=32+4+c \Rightarrow c=\ldots(-33)$	dM1
	$\mathrm{f}^{\prime}(x)=2 x^{2}+2 x^{\frac{1}{2}}-33$	A1
	$\mathrm{f}^{\prime}(x)=2 x^{2}+2 x^{\frac{1}{2}}-33 \Rightarrow \mathrm{f}(x)=\frac{2}{3} x^{3}+\frac{4}{3} x^{\frac{3}{2}}-33 x+d$	dM1
	$x=4, \mathrm{f}(x)=16 \Rightarrow(\mathrm{f}(x)=) \frac{2}{3} x^{3}+\frac{4}{3} x^{\frac{3}{2}}-33 x+\frac{284}{3}$	ddM1A1
		(6)
		(8 marks)

(a)

M1: States or implies that the gradient of the normal is $-\frac{1}{3}$
A1: Finds the equation of the normal $y-16=-\frac{1}{3}(x-4)$ o.e. e.g. $y=-\frac{1}{3} x+\frac{52}{3}, 3 y+x-52=0$
But not $\frac{y-16}{x-4}=-\frac{1}{3}$.
Requires a full correct equation. Apply isw once a correct equation is seen.
(b) Award marks if work in (b) is seen in (a).

M1: Attempts to integrate $\mathrm{f}^{\prime \prime}(x)$ once with one index correct. E.g. $4 x \rightarrow \ldots x^{2}$ or $\frac{1}{\sqrt{x}} \rightarrow \ldots x^{\frac{1}{2}}$ dM1: Applies $\mathrm{f}^{\prime}(4)=3$ and solves to find a constant of integration. Depends on first M1.
A1: $\left(\mathrm{f}^{\prime}(x)=\right) 2 x^{2}+2 x^{\frac{1}{2}}-33$ or obtains $\left(\mathrm{f}^{\prime}(x)=\right) 2 x^{2}+2 x^{\frac{1}{2}}+c$ with c correctly calculated as -33 Ignore labelling of the function e.g. they may call it $\mathrm{f}(x)$
dM1: Dependent upon first M1 only. For an attempt to integrate $\mathrm{f}^{\prime \prime}(x)$ twice and achieve a form $(\mathrm{f}(x)=) a x^{3}+b x^{\frac{3}{2}}+\ldots$ where \ldots could be 0 . Ignore labelling of the function e.g. they may call it $\mathrm{f}(x)$ dddM1: Dependent upon all previous M's. It is for using $f(4)=16$ (may be implied) to find the constant of integration.
A1: $(\mathrm{f}(x)=) \frac{2}{3} x^{3}+\frac{4}{3} x^{\frac{3}{2}}-33 x+\frac{284}{3}$ or exact equivalent. Apply isw once a correct expression is seen.

The " $\mathrm{f}(x)=$ " is not required and ignore any label they may have given it.
Also allow $(\mathrm{f}(x)=) \frac{2}{3} x^{3}+\frac{4}{3} x^{\frac{3}{2}}-33 x+c$ with c correctly calculated as $\frac{284}{3}$.

